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Abstract— This paper summarizes the validation that has
been performed for the Verisense Inertial Measurement Unit
(IMU) remote monitoring sensor, which utilizes the open source
GGIR analysis platform to process raw acceleration data to ob-
tain clinically meaningful activity and sleep metrics. This paper
employs the V3 framework proposed by the Digital Medicine
Society and others which includes three levels of validation:
verification, analytical validation and clinical validation. This
paper provides a practical example of how this framework can
be employed.

I. INTRODUCTION

This paper provides a practical example of the use of a
three-level validation approach described as the V3 frame-
work [7] using the Verisense platform. The Verisense plat-
form provides remotely captured biometric data from the
patients home and community setting. Verisense hardware
is based off the Shimmer platform [1], which has been
used extensively in clinical research applications for the past
decade. These applications include falls risk [2], bradykinesia
[3], Parkinsons Disease [4] and anorexia nervosa [5] to name
a few. For sleep and activity detection, Verisense calls upon
the widely used GGIR package [6].

The V3 medical device validation framework is considered
in this paper [7]. The V3 validation framework was designed
by industry leaders and published by the Digital Medicine
Society to highlight the various levels of validation required
for a digital health tool to be used in clinical research. This
consists of three levels; verification, analytical validation and
clinical validation. Verification consists of validation of the
sample-level data from a sensor. Analytical validation con-
sists of assessing the performance of the algorithm to predict
behavioral metrics. Finally, clinical validation validates the
measure in the stated context of use. Figure 1 shows the
summary of the V3 framework.

II. VERIFICATION

The first stage of the V3 validation process evaluates and
demonstrates the performance of a sensor technology at the
sample-level data it generates, against a pre-specified set of
criteria.
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Fig. 1. Summary of the V3 framework. Image used from [7].

A. Epoch-by-Epoch Level Validation

An epoch-by-epoch level validation was carried out on
Verisense outputs by researchers at the Letterkenny Institute
of Technology [8]. Fifteen adults (11 males, 23.4 ± 3.4 years
and 4 females, 29 ± 12.6 years) wore Verisense as well as
the reference actigraphy monitor for 48 hours in the free-
living protocol. Twelve adults (11 males, 23.4 ± 3.4 years
and 1 female, 22 ± 0 years) wore both monitors for the
duration of the supervised protocol. Participants performed
their regular, at home routine for the free-living protocol.
For the supervised protocol, participants performed walking
on a treadmill and overground at various speeds as well
as ascending and descending stairs. Agreement between the
reference actigraph and Verisense was high for both a free
living protocol (r = 0.85) as well as a structured protocol
(r = 0.78). The conclusion of this study was, ”Verisense,
a novel research-grade wearable device, produces activity
and sleep parameters that are comparable to a research-grade
actigraph”.

This study also demonstrates some of the challenges
of performing comparative studies. The reference wearable
could not provide raw acceleration data but only activity
counts in 15 second intervals. It was therefore necessary
to convert the Verisense raw data into a form that would
be comparable. The research group chose to use ENMO
(Euclidean norm minus one) to correlate with the reference
wearable activity count. The correlations were high. Based
on these correlations it is clear that ENMO is a good
approximation to the activity measure used by the reference
device and that Verisense has been independently verified
according to the first stage of the V3 validation approach
for clinical trials. This is not surprising, both systems use



off the shelf accelerometers which have been fully validated
and characterized by the manufacturers. If available from the
reference device, high correlation with the raw acceleration
data would be expected.

B. Accelerometer Auto-Calibration

The Verisense IMU provides raw, tri-axial acceleration
data, which is processed via the GGIR software to calcu-
late clinically meaningful sleep and activity metrics. The
accelerometer chip on the Verisense IMU provides a linear
relationship between the electrical signal and acceleration
for the sensor ranges that the chip supports. The noise
level in these operating modes range from 1.3-4.5 mg,
which are well below a meaningful level for activity and
sleep analysis. Acceleration signals are calibrated using the
GGIR autocalibratoin method [45]. This works by detecting
periods of wear in which the patient is stationary and using
the moving average of those periods across each of the
accelerometer axes to generate a three-dimensional ellipsoid.
Properly calibrated outputs would result in an ellipsoid with
a radius of 1 g, so any deviations from this are used to
calibrate the accelerometer outputs. This method was shown
to provide accurate data in cohorts from the UK (n=921),
Kuwait (n=120), Cameroon (n=311) and Brazil (n=200).
The authors of this study conclude that, ”Results indicate
that the autocalibration method works under a wide range
of experimental conditions, spanning different geographical
latitudes, different seasons affecting temperature variation
during the day, different populations affecting movement and
activity patterns, different built environments, and different
adult age groups” [45].

III. ANALYTICAL VALIDATION

The second validation stage in the V3 process is the ana-
lytical validation. The purpose of the analytical evaluation is
to evaluate the performance of the algorithm, and the ability
of this component of the tool to measure, detect or predict
physiological or behavioral metrics. The Verisense system
utilizes the GGIR package to process raw accelerometry data
into clinically useful activity and sleep metrics.

A. Sleep period time window (SPT) validation

The GGIR processing algorithm uses a heuristic algorithm
looking at distribution change in z-angle of the forearm to
detect sleep onset time and wake time. Sleep onset time,
waking time and sleep period time (SPT) window (time from
sleep onset to waking) were validated in a 2018 paper [9]
on 50 patients recorded with polysomnography and 3752
participants recorded with sleep logs. Sleep onset time had a
mean absolute error (MAE) of 39.9 minutes, wake time had
a MAE of 29.9 minutes and the SPT window had an MAE
of 40 minutes compared to sleep log data. Validation results

are shown in Table I compared to a previous algorithm that
did not rely on the forearm angle for sleep detection.

TABLE I
MEAN ABSOLUTE ERROR OF SLEEP ONSET TIME, WAKE TIME AND

SLEEP PERIOD TIME (SPT) WINDOW.

[h] Algorithm Sleep Onset Wake Time SPT Window
[min] [min] [min]

HDCZA
with fore-arm angle 39.9 29.9 40

Heuristic
without fore-arm angle 93.3 58.4 128.4

B. Physical activity level validation

A study found that the Verisense algorithm was accurate
at detecting various physical activity levels in a population
that consisted of thirty children (7-11 years) and thirty adults
(18-65 years) [10]. Euclidean norm minus one values were
calculated from the wrist sensor and a cut point approach
was used to classify activities into sedentary, light phys-
ical activity (PA), moderate PA and vigorous PA. Testing
was performed under supervised conditions on a treadmill.
Classifications from the wrist sensor ENMO outputs were
compared to metabolic equivalent of task (MET) values from
the metabolic gas analysis system. Results are summarized
in Table II. It was found that physical activity level could be
accurately identified for all by slow walking conditions.

C. Wake after sleep onset

The sleep efficiency score is calculated as the ratio of
nocturnal wake time in between sleep onset time and wake
up time. This is calculated based on five minute windows of
raw data from the tri-axial accelerometer. Nocturnal wake
times were compared to polysomnography data from 28
patients and yielded an accuracy of 81%, a sensitivity of
81% and a specificity of 60% [11]. In this case, sensitivity
represents the percentage of correctly identified sleep periods
and specificity represents the percentage of correctly identi-
fied nocturnal wake periods. This research shows that sleep
efficiency can be accurately obtained using GGIR processing.

TABLE II
VALIDATION RESULTS OF ACTIVITY LEVEL IDENTIFICATION FROM

VERISENSE.

Physical Activity Detection Accuracy
Laying 100%
Sitting 96%

Standing 100%
Slow Walk 55%
Fast Walk 100%
Running 97%



TABLE III
STUDIES PERFORMED USING GGIR DATA PROCESSING.

Therapeutic
area Patient Cohort Number of

Patients (n)

Cardiovascular

Heart surgery patients [44]
Stroke [15]

Cardiovascular Disease [16]
Coronary Artery Disease [17]

80
41

23,742
58

Central Nervous System Muscular Dystrophy [18]
Dementia [19]

128
26

Musculoskeletal

Idiopathic inflammatory
myopathy [20]

Muscular Dystrophy [18]
Sarcopenia [21]

55
128
131

Mental Health
Depression [22]

Bipolar Disorder [23]
Post-Partum Depression [24]

359
46
21

Diabetes
Gestational Diabetes [25]

Type II Diabetes Mellitus [26]
Type II Diabetes [27]

697
635
246

Rehabilitation and
recovery

Pulmonary rehab patients [28]
Bariatric surgery patients [29]

79
22

Pulmonary
Cystic Fibrosis [30]

Idiopathic Pulmonary
Fibrosis [31]

9

35

Aging Older adults [32]
Post-menopausal women [33]

1,451
1,316

Lifestyle

Sedentary adults [34]
Obesity [35]

Smoking [36]
General population [37]

191
1,986
3,063
85,388

Children
Obese / overweight [38]

Adolescents [39]
Children [40]

208
2,526
2,636

Pregnant Women Pregnant women [41]
Pregnant and overweight [42]

2,317
257

IV. CLINICAL VALIDATION

The third and final stage of the V3 validation framework
is clinical validation. Clinical validation evaluates whether a
biometric monitoring technology acceptably identifies, mea-
sures or predicts a meaningful clinical, biological, physical,
functional state or experience, in the stated context of use
(which includes a specified population). In many cases,
this context will include a specific symptom of interest as
well (e.g. freezing versus tremors in Parkinson’s patients).
Because there are so many possible metrics, this validation
may need to be performed in conjunction with the specific
study to be undertaken.

One of the advantages of using a widely used open source
software package like GGIR is that many studies (over 150
in the case of GGIR) have been performed on different
populations and therapeutic areas. Table III summarizes the
work performed in different therapeutic areas and cohorts.
We highlight some specific results from this large body of
evidence below.

A. Stroke

The relationship between physical activity, sleep and fa-
tigue was assessed in forty one stroke patients using wrist

worn accelerometry and the same processing algorithms
that Verisense utilize [13]. Researchers found that stroke
survivors performed less moderate to vigorous physical
activity (MVPA) in ten minute bouts than the National
Stroke guidelines recommend. They also found associations
between light physical activity and fatigue as well as MVPA
and sleep efficiency.

B. Cardiovascular Disease & Type II Diabetes

Researchers used a subset of data from the UK Biobank
study (n = 106,053) to investigate the relationship between
cardio-metabolic disease and physical activity in a large
scale, objective study [14]. They found that men and women
with the worst cardio-metabolic disease perform around half
of moderate to vigorous physical activity on a daily basis
compared to healthy individuals and spend almost 7 hours
per day in 30 minute inactivity bouts. The researchers state
that tri-axial accelerometers provide enhanced measurement
opportunities for measuring lifestyle behaviors in chronic
disease.

C. Dementia

Twenty six community dwelling people with mild demen-
tia were asked to wear a wrist based monitor for thirty days
for a feasibility and acceptance study [12]. Results indicated
that patients tended to find wearing the activity monitors
acceptable, with only three participants withdrawing prior
to the end of the study. Dementia patients were satisfied
with wearing the wrist device for one month as measured
by the Quebec User Evaluation of Satisfaction with assistive
Technology survey.

V. CONCLUSIONS

The Verisense IMU has undergone significant validation in
all three levels of the V3 process. Although it is impossible
for any device to be completely validated for every possible
therapeutic use case, use of a commonly used open-source
software package allows researchers to leverage previous
validation work. Furthermore, any published results of new
validation studies can be used to build up the body of
validation work for future researchers - even if they do not
use the same specific device. By using GGIR, the most
widely used open source analysis package for wrist-based
accelerometry, the Verisense validation effort can leverage
an ever-growing body of validation work available.
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